Probability Formalisation 1. Importance This section will give how probability is formally defined.
It is not required at all, but it gives insight when a probability question makes sense.
Also it gives how to construct some random variables.
Be aware that this an advanced topic ⚠️⚠️⚠️.
1.1 Examples that have a meaning Choose X X X uniformly from [ 0 , 1 ] [0,1] [ 0 , 1 ]
Choose X X X uniformly from { 0 , 1 , 2 , 3 } \{0,1,2,3\} { 0 , 1 , 2 , 3 }
Let X ∼ U ( 0 , 1 ) , X\sim \mathcal{U}(0,1), X ∼ U ( 0 , 1 ) , what is the probability that X ∈ Q X\in \mathbb{Q} X ∈ Q ?
Let Q ˉ = { α ∈ R / ∃ P ∈ Q [ x ] / P ( α ) = 0 } \bar{\mathbb{Q}}=\{\alpha\in\mathbb{R}/\quad \exists P\in\mathbb{Q}[x]/\quad P(\alpha)=0\} Q ˉ = { α ∈ R / ∃ P ∈ Q [ x ] / P ( α ) = 0 } The set of all real numbers that are a solution to some polynomial function with rational coefficients. The statement below is a valid statement:
Let X ∼ N ( 0 , 1 ) X\sim \mathcal{N}(0,1) X ∼ N ( 0 , 1 ) , what is the probability that X ∈ Q ˉ X\in \bar{\mathbb{Q}} X ∈ Q ˉ ?
1.2 Examples that does not have a meaning Choose X X X uniformly from N \mathbb{N} N
Choose X X X uniformly from R \mathbb{R} R
Let V ⊆ R \mathcal{V}\subseteq \mathbb{R} V ⊆ R a set such that ∀ x ∈ R , ∃ ! y ∈ V / x − y ∈ Q ∩ [ 0 , 1 ] . \forall x\in\mathbb{R},\exists!y\in\mathcal{V}/\quad x-y \in\mathbb{Q}\cap[0,1]. ∀ x ∈ R , ∃ ! y ∈ V / x − y ∈ Q ∩ [ 0 , 1 ] . Such set is called a Vitali set . The statement below does not have a meaning
Let X ∼ U ( 0 , 1 ) X\sim \mathcal{U}(0,1) X ∼ U ( 0 , 1 ) , what is the probability that X ∈ V X\in\mathcal{V} X ∈ V ?
1.3. Road Map To formally define a probability, we need:
A universe Ω \Omega Ω
set F \mathcal{F} F of events.
Some probability function μ \mu μ that assigns a probability p ∈ [ 0 , 1 ] p\in[0,1] p ∈ [ 0 , 1 ] for every event A ∈ F . A\in\mathcal{F}. A ∈ F .
Now we will start by defining suitable set of events F . \mathcal{F}. F .
Then we will define some consistent probability functions μ \mu μ
Finally, we will formally define a random variable.
2. Sigma Algebra 2.1 Definition Let S S S be some set, and P ( S ) \mathscr{P}(S) P ( S ) be its power set.
A subset Σ ⊆ P ( S ) \Sigma \subseteq \mathscr{P}(S) Σ ⊆ P ( S ) is called a σ \sigma σ -algebra if:
S ∈ Σ S\in \Sigma S ∈ Σ
Σ \Sigma Σ is closed under set complementation:
∀ A ∈ Σ , A ˉ = S ∖ A ∈ Σ \forall A\in \Sigma ,\quad \bar{A}= S\setminus A \in \Sigma ∀ A ∈ Σ , A ˉ = S ∖ A ∈ Σ Σ \Sigma Σ is closed under countable union:
∀ ( A n ) n ∈ N ∈ Σ N , ⋃ n ∈ N A n ∈ Σ \forall (A_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}},\quad \bigcup_{n\in\mathbb{N}}A_n \in \Sigma ∀ ( A n ) n ∈ N ∈ Σ N , n ∈ N ⋃ A n ∈ Σ 2.2 Example For any set S , S, S , P ( S ) \mathscr{P}(S) P ( S ) and { ∅ , S } \{\empty,S\} { ∅ , S } are both a sigma algebra
2.3 Importance In probability, A σ \sigma σ -algebra gives which events make sens. Those events can be aggregated using set union or set intersection.
3. Measurable Space 3.1 Definition Let S S S be some set and F \mathcal{F} F be a σ \sigma σ -algebra of S S S
The couple ( S , F ) (S,\mathcal{F}) ( S , F ) is called a measurable space
3.2 Significance A measurable space is on some sense a space on which it is possible to define a function defining the "size" of any set A ∈ F A\in\mathcal{F} A ∈ F
This function will have some constraints that will be formalised next.
3.3 Examples For any set S , S, S , ( S , P ( S ) ) (S,\mathscr{P}(S)) ( S , P ( S )) is a measurable set
3.4 Measurable Set A set U ∈ P ( S ) U\in\mathscr{P}(S) U ∈ P ( S ) is said to be measurable if U ∈ F U\in \mathcal{F} U ∈ F
Any set U ∉ F U\notin \mathcal{F} U ∈ / F is called a non-measurable set.
4. Measure Space 4.1 Definition A measure space ( S , F , μ ) (S,\mathcal{F},\mu) ( S , F , μ ) is a measurable space ( S , F ) (S,\mathcal{F}) ( S , F ) with an additional real valued function μ : F → R ˉ \mu:\mathcal{F}\rightarrow \bar{\mathbb{R}} μ : F → R ˉ called measure satisfying the following conditions:
The measure of the empty set is null : μ ( ∅ ) = 0 \mu(\emptyset)=0 μ ( ∅ ) = 0
The measure function is non-negative : ∀ A ∈ F , μ ( A ) ≥ 0 \forall A\in \mathcal{F}, \quad \mu(A)\ge 0 ∀ A ∈ F , μ ( A ) ≥ 0
The measure function is countably additive with respect to disjoint sets :
∀ ( A n ) ∈ F N pairwise disjoint , μ ( ⋃ n ∈ N A n ) = ∑ n ∈ N μ ( A n ) \forall (A_n)\in \mathcal{F}^\mathbb{N} \space \text{pairwise disjoint}, \quad \mu\left(\bigcup_{n\in\mathbb{N}} A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n) ∀ ( A n ) ∈ F N pairwise disjoint , μ ( n ∈ N ⋃ A n ) = n ∈ N ∑ μ ( A n ) 4.2 Significance A measure space is a set S S S with a function μ \mu μ giving the size of measurable subsets A ⊆ S A\subseteq S A ⊆ S
4.3 Examples 4.3.1 Finite Set Let S S S be a finite set of size n ∈ N n\in\mathbb{N} n ∈ N Let M = ( S , P ( S ) ) \mathcal{M}=(S,\mathscr{P}(S)) M = ( S , P ( S )) be a measurable space We will define μ \mu μ as follow:
∀ A ⊆ S , μ ( A ) = ∣ A ∣ \forall A\subseteq S, \quad \mu(A)=\vert A \rvert ∀ A ⊆ S , μ ( A ) = ∣ A ∣ We can verify that ( M , μ ) (\mathcal{M},\mu) ( M , μ ) is a measure space.
Also, with p = μ ∣ S ∣ p=\frac{\mu}{\lvert S \rvert} p = ∣ S ∣ μ , ( M , p ) (\mathcal{M},p) ( M , p ) is also a measure space.
4.3.2 Natural numbers We will set F = P ( N ) \mathcal{F}=\mathscr{P}(\mathbb{N}) F = P ( N )
We will define μ \mu μ as follow:
∀ A ⊆ N finite , μ ( A ) = ∣ A ∣ \forall A\subseteq \mathbb{N} \quad \text{finite}, \quad \mu(A)=\vert A \rvert ∀ A ⊆ N finite , μ ( A ) = ∣ A ∣ We can verify that ( M , μ ) (\mathcal{M},\mu) ( M , μ ) is a measure space.
As an example, μ ( { 1 , 2 , 8 } ) = 3. \mu(\{1,2,8\})=3. μ ({ 1 , 2 , 8 }) = 3.
We can also define another measure λ \lambda λ as:
∀ A ⊆ N , μ ( A ) = ∑ k ∈ A 2 − k \forall A\subseteq \mathbb{N}, \quad \mu(A)=\sum_{k\in A}2^{-k} ∀ A ⊆ N , μ ( A ) = k ∈ A ∑ 2 − k As an example, λ ( { 0 , 2 } ) = 1 + 1 4 = 1.25 \lambda(\{0,2\})=1+\frac{1}{4}=1.25 λ ({ 0 , 2 }) = 1 + 4 1 = 1.25
Also, λ ( N ) = ∑ n ∈ N 2 − n = 2 \lambda(\mathbb{N})=\sum_{n\in\mathbb{N}}2^{-n}=2 λ ( N ) = ∑ n ∈ N 2 − n = 2
4.3.2 Real Line R \mathbb{R} R can be augmented to a measure space ( R , B , μ ) (\mathbb{R},\mathcal{B},\mu) ( R , B , μ ) with μ \mu μ defined as:
∀ a ≤ b , μ ( ] a , b [ ) = b − a \forall a\le b,\quad \mu(]a,b[)=b-a ∀ a ≤ b , μ ( ] a , b [ ) = b − a In fact:
μ \mu μ gives the length of a set A ∈ B A\in\mathcal{B} A ∈ B B \mathcal{B} B is called a Borel set , and its construction is a too advanced.B ≠ P ( R ) , \mathcal{B}\neq \mathscr{P}(\mathbb{R}), B = P ( R ) , as it happens that the Vitali set V \mathcal{V} V defined at 1.2 1.2 1.2 is not a Borel set.4.3 Measurable Function Let ( S , F , μ ) (S,\mathcal{F},\mu) ( S , F , μ ) be a measure space Let ( E , E ) (E,\mathcal{E}) ( E , E ) be a measurable space A function f : S → E f:S\rightarrow E f : S → E is said to be measurable if the pre-image of any measurable set is measurable:
∀ U ∈ E , f − 1 ( U ) ∈ F \forall U\in \mathcal{E},\quad f^{-1}(U)\in \mathcal{F} ∀ U ∈ E , f − 1 ( U ) ∈ F 5. Probability Space 5.1 Definition A probability space is a measure space ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) ( Ω , F , μ ) with the additional constraint that μ ( Ω ) = 1 \mu(\Omega)=1 μ ( Ω ) = 1
5.2 Terminology 5.3 Examples 5.3.1 Finite Sets The measure space ( M , p ) (\mathcal{M},p) ( M , p ) from the example 4.3.1 4.3.1 4.3.1 is a probability space
5.3.2 Natural numbers The measure λ \lambda λ from 3.3.2 3.3.2 3.3.2 is not a probability measure, but it induces a probability measure ϕ \phi ϕ defined by:
∀ A ⊆ N , ϕ ( A ) = λ ( A ) λ ( N ) = 1 2 ∑ k ∈ A 2 − k \forall A\subseteq \mathbb{N},\quad \phi(A)=\frac{\lambda(A)}{\lambda(\mathbb{N})}=\frac{1}{2}\sum_{k\in A}2^{-k} ∀ A ⊆ N , ϕ ( A ) = λ ( N ) λ ( A ) = 2 1 k ∈ A ∑ 2 − k The measure μ \mu μ from 3.3.2 3.3.2 3.3.2 cannot induce a probability space like λ \lambda λ as μ ( N ) = + ∞ \mu(\mathbb{N})=+\infty μ ( N ) = + ∞
5.3.3 Real numbers Let ( R , B , μ ) (\mathbb{R},\mathcal{B},\mu) ( R , B , μ ) the measure space defined in 4.3.3 4.3.3 4.3.3
We will define another measure λ \lambda λ defined as follow:
∀ a ≤ b , λ ( ] a , b [ ) = μ ( [ 0 , 1 ] ∩ ] a , b [ ) \forall a\le b,\quad \lambda(\mathopen]a,b\mathclose[)=\mu([0,1]\cap\mathopen]a,b\mathclose[) ∀ a ≤ b , λ ( ] a , b [ ) = μ ([ 0 , 1 ] ∩ ] a , b [ ) With that, ( R , B , λ ) (\mathbb{R},\mathcal{B},\lambda) ( R , B , λ ) is a probability space.
5.3.4 Dirac Measure Let ( R , P ( R ) , δ ) , (\mathbb{R},\mathscr{P}(\mathbb{R}),\delta), ( R , P ( R ) , δ ) , with δ \delta δ defined as:
∀ A ⊆ R , δ ( A ) = { 1 if 0 ∈ A 0 otherwise \forall A\subseteq \mathbb{R},\quad \delta(A)=\begin{cases} 1 &\text{if} \space 0\in A\\ 0 &\text{otherwise} \end{cases} ∀ A ⊆ R , δ ( A ) = { 1 0 if 0 ∈ A otherwise 6. Random Variable 6.1 Definition Let ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) ( Ω , F , μ ) be a probability space Let ( E , E ) (E,\mathcal{E}) ( E , E ) a measurable space A function X : Ω → E X:\Omega\rightarrow E X : Ω → E is called a random variable if it is measurable.
In other words, that is if it is a measurable function whose domain constitute a probability space.
6.2 Probability of an event Let U ∈ E U\in\mathcal{E} U ∈ E an event.
We define the probability that X ∈ U X\in U X ∈ U , denoted by P ( X ∈ U ) \mathcal{P}(X\in U) P ( X ∈ U ) as follow:
P ( X ∈ U ) = μ ( { ω ∈ Ω / X ( ω ) ∈ U } ) = μ ( X − 1 ( U ) ) \mathcal{P}(X\in U)=\mu\left(\{\omega \in \Omega / \quad X(\omega)\in U\}\right)=\mu\left(X^{-1}(U)\right) P ( X ∈ U ) = μ ( { ω ∈ Ω/ X ( ω ) ∈ U } ) = μ ( X − 1 ( U ) ) 6.3 Distribution The probability function defined at 6.2 constitute a measure D \mathcal{D} D of the measurable space ( E , E ) (E,\mathcal{E}) ( E , E )
This measure is defined as: ∀ U ∈ E , D ( U ) = μ ( X − 1 ( U ) ) , \forall U\in \mathcal{E},\quad\mathcal{D}(U)=\mu(X^{-1}(U)), ∀ U ∈ E , D ( U ) = μ ( X − 1 ( U )) , and it is called the distribution of X . X. X .
If X X X has a distribution D \mathcal{D} D , we say that X X X follows a D \mathcal{D} D distribution, and we note it as:
6.4 Classification We will only consider two types of random variables:
6.4.1 Discrete Random Variable A random variable is said to be discrete if X ( Ω ) X(\Omega) X ( Ω ) is countable
6.4.2 Continuous Random Variable A random variable X X X is said to be continuous if:
∀ ω ∈ Ω , P ( X = ω ) = 0 \forall \omega\in \Omega,\quad \mathcal{P}(X=\omega)=0 ∀ ω ∈ Ω , P ( X = ω ) = 0 6.5 Examples This examples show the formal construction of some random variables.
n ∈ N ∗ n \in\mathbb{N}^* n ∈ N ∗ Let a , b ∈ N ∗ a,b\in\mathbb{N}^* a , b ∈ N ∗ such that a ≤ b a\le b a ≤ b Let S = { a , … , b } S=\{a,\dots,b\} S = { a , … , b } As S S S is finite, we can define the probability space ( S , P ( S ) , p ) (S,\mathscr{P}(S),p) ( S , P ( S ) , p ) as in 5.3.1 5.3.1 5.3.1 Let X : S → S X:S\rightarrow S X : S → S defined by X ( ω ) = ω X(\omega)=\omega X ( ω ) = ω We have:
∀ s ∈ S , P ( X = s ) = p ( X − 1 ( ω ) ) = p ( { ω } ) = 1 ∣ S ∣ = 1 b − a + 1 \forall s\in S,\quad \mathcal{P}(X=s)=p(X^{-1}(\omega))=p(\{\omega\})=\frac{1}{\lvert S \rvert}=\frac{1}{b-a+1} ∀ s ∈ S , P ( X = s ) = p ( X − 1 ( ω )) = p ({ ω }) = ∣ S ∣ 1 = b − a + 1 1 Note that as X ( S ) = S X(S)=S X ( S ) = S is a countable set, this random variable is a discrete random variable.
6.5.2 Bernoulli Random Variable Let ( R , B , λ ) (\mathbb{R},\mathcal{B},\lambda) ( R , B , λ ) as defined on 5.3.3 5.3.3 5.3.3
Let E = { 0 , 1 } , E = P ( E ) , E=\{0,1\}, \mathcal{E}=\mathscr{P}(E), E = { 0 , 1 } , E = P ( E ) , so that ( E , E ) (E,\mathcal{E}) ( E , E ) is a measurable space
Let p ∈ [ 0 , 1 ] p\in[0,1] p ∈ [ 0 , 1 ] .
Let X : R → E X:\mathbb{R}\rightarrow E X : R → E defined as:
X ( ω ) = { 1 if x < p 0 otherwise X(\omega)=\begin{cases} 1 & \text{if} \space x <p \\ 0& \text{otherwise} \end{cases} X ( ω ) = { 1 0 if x < p otherwise We have:
P ( X = 1 ) = λ ( X − 1 ( 1 ) ) = λ ( ] − ∞ , p [ ) = μ ( [ 0 , 1 ] ∩ ] − ∞ , p [ ) = μ ( [ 0 , p [ ) = p P ( X = 0 ) = P ( X ≠ 1 ) = 1 − P ( X = 1 ) = 1 − p \begin{align*} \mathcal{P}(X=1)&=\lambda(X^{-1}(1)) \\ &=\lambda(\mathopen]-\infty,p\mathclose[)\\ &=\mu([0,1]\cap \mathopen]-\infty,p\mathclose[) \\ &=\mu([0,p[)\\ &= p \\ \mathcal{P}(X=0)&=\mathcal{P}(X\ne 1) \\ &= 1-\mathcal{P}(X=1)\\ &= 1-p \end{align*} P ( X = 1 ) P ( X = 0 ) = λ ( X − 1 ( 1 )) = λ ( ] − ∞ , p [ ) = μ ([ 0 , 1 ] ∩ ] − ∞ , p [ ) = μ ([ 0 , p [ ) = p = P ( X = 1 ) = 1 − P ( X = 1 ) = 1 − p With that, we can verify that X ∼ B ( p ) X\sim \mathcal{B}(p) X ∼ B ( p )
Note that as X ( R ) = { 0 , 1 } X(\mathbb{R})=\{0,1\} X ( R ) = { 0 , 1 } is a countable set, this random variable is a discrete random variable.
Let ( R , B , λ ) (\mathbb{R},\mathcal{B},\lambda) ( R , B , λ ) as defined on 5.3.3 5.3.3 5.3.3 Let p ∈ [ 0 , 1 ] p\in[0,1] p ∈ [ 0 , 1 ] . Let X : R → R X:\mathbb{R}\rightarrow \mathbb{R} X : R → R defined as W ( ω ) = ω W(\omega)=\omega W ( ω ) = ω We have:
∀ a , b ∈ [ 0 , 1 ] / a ≤ b , P ( X ∈ [ a , b ] ) = λ ( X − 1 ( [ a , b ] ) ) = λ ( [ a , b ] ) = μ ( [ 0 , 1 ] ∩ [ a , b ] ) = μ ( [ a , b ] ) = b − a \begin{align*} \forall a,b\in[0,1] /a\le b,\quad \mathcal{P}(X\in [a,b])&=\lambda(X^{-1}([a,b]))\\ &=\lambda([a,b])\\ &=\mu([0,1]\cap [a,b]) \\ &=\mu([a,b])\\ &=b-a \end{align*} ∀ a , b ∈ [ 0 , 1 ] / a ≤ b , P ( X ∈ [ a , b ]) = λ ( X − 1 ([ a , b ])) = λ ([ a , b ]) = μ ([ 0 , 1 ] ∩ [ a , b ]) = μ ([ a , b ]) = b − a This result essentially says that X ∼ U ( 0 , 1 ) . X\sim \mathcal{U}(0,1). X ∼ U ( 0 , 1 ) . And we can verify that X X X is a continuous random variable.
Now we will calculate P ( X ∈ Q ) \mathcal{P}(X\in \mathbb{Q}) P ( X ∈ Q )
As X X X is a continuous random variable, we have: ∀ x ∈ R , P ( X = x ) = 0. \forall x \in\mathbb{R},\quad \mathcal{P}(X=x)=0. ∀ x ∈ R , P ( X = x ) = 0.
Furthermore, as Q \mathbb{Q} Q is infinitely countable , there exists a bijective function Φ : N → Q \Phi:\mathbb{N}\rightarrow \mathbb{Q} Φ : N → Q . with that:
P ( X ∈ Q ) = λ ( Q ) = λ ( ⋃ n ∈ N { Φ ( n ) } ) = ∑ n ∈ N λ ( { Φ ( n ) } ) = ∑ n ∈ N 0 = 0 \begin{align*} \mathcal{P}(X\in\mathbb{Q})&=\lambda(\mathbb{Q})\\ &=\lambda\left(\bigcup_{n\in\mathbb{N}}\{\Phi(n)\}\right)\\ &=\sum_{n\in\mathbb{N}}\lambda(\{\Phi(n)\})\\ &=\sum_{n\in\mathbb{N}}0\\ &=0 \end{align*} P ( X ∈ Q ) = λ ( Q ) = λ ( n ∈ N ⋃ { Φ ( n )} ) = n ∈ N ∑ λ ({ Φ ( n )}) = n ∈ N ∑ 0 = 0 7. Discrete Random Variable 7.1 Definition Let ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) ( Ω , F , μ ) be a probability space Let ( E , E ) (E,\mathcal{E}) ( E , E ) a measurable space A random variable X : Ω → E X:\Omega \rightarrow E X : Ω → E is said to be discrete if X ( Ω ) X(\Omega) X ( Ω ) is countable
7.2 Probability Mass Function 7.2.1 Definition The probability mass function M X M_X M X is defined as:
M X ( ω ) = P ( X = ω ) M_X(\omega)=\mathcal{P}(X=\omega) M X ( ω ) = P ( X = ω ) Now we will recover the probability of an event from its mass function.
7.2.2 Probability of an event Let A ∈ E , A\in \mathcal{E}, A ∈ E , we have the following:
P ( X ∈ A ) = μ ( X − 1 ( A ) ) = μ ( X − 1 ( A ) ∩ Ω ) = μ ( X − 1 ( A ) ∩ X − 1 ( X ( Ω ) ) ) = μ ( X − 1 ( A ∩ X ( Ω ) ) ) = P ( X ∈ A ∩ X ( Ω ) ) \begin{align*} \mathcal{P}(X\in A)&=\mu(X^{-1}(A))\\ &=\mu\left(X^{-1}(A)\cap \Omega\right)\\ &=\mu\left(X^{-1}(A)\cap X^{-1}(X(\Omega))\right)\\ &=\mu\left(X^{-1}\left(A\cap X(\Omega)\right)\right)\\ &=\mathcal{P}(X\in A\cap X(\Omega) ) \end{align*} P ( X ∈ A ) = μ ( X − 1 ( A )) = μ ( X − 1 ( A ) ∩ Ω ) = μ ( X − 1 ( A ) ∩ X − 1 ( X ( Ω )) ) = μ ( X − 1 ( A ∩ X ( Ω ) ) ) = P ( X ∈ A ∩ X ( Ω )) As A ∩ X ( Ω ) ⊆ X ( Ω ) A\cap X(\Omega)\subseteq X(\Omega) A ∩ X ( Ω ) ⊆ X ( Ω ) is countable, there exists a bijective function Φ : I → A ∩ X ( Ω ) \Phi: \mathcal{I}\rightarrow A \cap X(\Omega) Φ : I → A ∩ X ( Ω ) with I ⊆ N \mathcal{I}\subseteq \mathbb{N} I ⊆ N .
And from that we can calculate the probability of A : A: A :
P ( X ∈ A ) = P ( X ∈ A ∩ X ( Ω ) ) = μ ( X − 1 ( A ∩ X ( Ω ) ) ) = μ ( X − 1 ( ⋃ n ∈ N { Φ ( n ) } ) ) = μ ( ⋃ n ∈ N X − 1 ( { Φ ( n ) } ) ) = ∑ n ∈ N μ ( X − 1 ( Φ ( n ) ) ) = ∑ ω ∈ A ∩ X ( Ω ) μ ( X − 1 ( ω ) ) we define this sum as the one above = ∑ ω ∈ A ∩ X ( Ω ) P ( X = ω ) = ∑ ω ∈ A ∩ X ( Ω ) P ( X = ω ) + P ( X ∈ A ∩ X ˉ ( Ω ) ) as the last term is zero = ∑ ω ∈ A ∩ X ( Ω ) P ( X = ω ) + ∑ ω ∈ A ∩ X ˉ ( Ω ) P ( X = ω ) as every term is zero = ∑ ω ∈ A P ( X = ω ) it makes sense as only countably many terms are non-zero \begin{align*} \mathcal{P}(X\in A)&=\mathcal{P}(X\in A\cap X(\Omega))\\ &=\mu\left(X^{-1}(A\cap X(\Omega))\right)\\ &=\mu\left(X^{-1}\left(\bigcup_{n\in\mathbb{N}}\{\Phi(n)\}\right)\right)\\ &=\mu\left(\bigcup_{n\in\mathbb{N}}X^{-1}\left(\{\Phi(n)\}\right)\right)\\ &=\sum_{n\in\mathbb{N}} \mu(X^{-1}(\Phi(n)))\\ &=\sum_{\omega \in A\cap X(\Omega)}\mu(X^{-1}(\omega)) \quad \text{we define this sum as the one above}\\ &=\sum_{\omega\in A\cap X(\Omega)}\mathcal{P}(X = \omega) \\ &=\sum_{\omega\in A\cap X(\Omega)}\mathcal{P}(X = \omega) + \mathcal{P}(X\in A \cap\bar{X}(\Omega))\quad \text{as the last term is zero} \\ &=\sum_{\omega\in A\cap X(\Omega)}\mathcal{P}(X = \omega) + \sum_{\omega \in A\cap \bar{X}(\Omega)}\mathcal{P}(X=\omega) \quad \text{as every term is zero}\\ &=\sum_{\omega\in A}\mathcal{P}(X=\omega) \quad \text{it makes sense as only countably many terms are non-zero} \end{align*} P ( X ∈ A ) = P ( X ∈ A ∩ X ( Ω )) = μ ( X − 1 ( A ∩ X ( Ω )) ) = μ ( X − 1 ( n ∈ N ⋃ { Φ ( n )} ) ) = μ ( n ∈ N ⋃ X − 1 ( { Φ ( n )} ) ) = n ∈ N ∑ μ ( X − 1 ( Φ ( n ))) = ω ∈ A ∩ X ( Ω ) ∑ μ ( X − 1 ( ω )) we define this sum as the one above = ω ∈ A ∩ X ( Ω ) ∑ P ( X = ω ) = ω ∈ A ∩ X ( Ω ) ∑ P ( X = ω ) + P ( X ∈ A ∩ X ˉ ( Ω )) as the last term is zero = ω ∈ A ∩ X ( Ω ) ∑ P ( X = ω ) + ω ∈ A ∩ X ˉ ( Ω ) ∑ P ( X = ω ) as every term is zero = ω ∈ A ∑ P ( X = ω ) it makes sense as only countably many terms are non-zero By that, for every event A ∈ E A\in\mathcal{E} A ∈ E we have:
P ( X ∈ A ) = ∑ ω ∈ A P ( X = ω ) = ∑ ω ∈ A M X ( ω ) \mathcal{P}(X\in A)=\sum_{\omega \in A}\mathcal{P}(X=\omega)=\sum_{\omega \in A}M_X(\omega) P ( X ∈ A ) = ω ∈ A ∑ P ( X = ω ) = ω ∈ A ∑ M X ( ω ) 7.3 Examples The Discrete Uniform Variable shown in 6.5.1 6.5.1 6.5.1 The Bernoulli Random Variable shown in 6.5.2 6.5.2 6.5.2 Even when we expand the domain of the Bernoulli Random Variable to E = R , E = B . E=\mathbb{R},\mathcal{E}=\mathcal{B}. E = R , E = B . It will always be a discrete random variable as X ( Ω ) = { 0 , 1 } X(\Omega)=\{0,1\} X ( Ω ) = { 0 , 1 } 8. Real Random Variable 8.1 Definition Let ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) ( Ω , F , μ ) be a probability space Let E = R , E = B E=\mathbb{R},\mathcal{E}=\mathcal{B} E = R , E = B so that ( R , B ) (\mathbb{R},\mathcal{B}) ( R , B ) is a measurable space A real random variable is a random variable X : Ω → R X:\Omega\rightarrow \mathbb{R} X : Ω → R
Furthermore, if it is continuous, it is said to be a continuous real random variable
8.2 Cumulative Distribution Function For a random variable X X X , its cumulative distribution function F X F_X F X is defined by:
∀ x ∈ R , F X ( x ) = P ( X ≤ x ) = P ( X ∈ ] − ∞ , x ] ) \forall x\in\mathbb{R},\quad F_X(x)=\mathcal{P}(X\le x)=\mathcal{P}(X\in\mathopen]-\infty,x\mathclose]) ∀ x ∈ R , F X ( x ) = P ( X ≤ x ) = P ( X ∈ ] − ∞ , x ] ) Example Let X ∼ U ( 0 , 1 ) X\sim \mathcal{U}(0,1) X ∼ U ( 0 , 1 )
The cumulative distribution function of X X X is:
F X ( x ) = { 0 if x < 0 x if x ∈ [ 0 , 1 ] 1 otherwise F_X(x)=\begin{cases} 0 &\text{if} \space x <0 \\ x &\text{if} \space x\in[0,1]\\ 1 &\text{otherwise} \end{cases} F X ( x ) = ⎩ ⎨ ⎧ 0 x 1 if x < 0 if x ∈ [ 0 , 1 ] otherwise 8.3 Probability Density Function 8.3.1 Definition Where it can be defined, the probability Density function f X f_X f X is the derivative of the F X : F_X: F X :
8.3.2 Probability of an event If F X F_X F X is differentiable almost everywhere, then for every event A ∈ B : A\in\mathcal{B}: A ∈ B :
P ( X ∈ A ) = ∫ A f X ( x ) dx \mathcal{P}(X\in A)=\int_{A}f_X(x)\space \text{dx} P ( X ∈ A ) = ∫ A f X ( x ) dx In particular, for every interval [ a , b ] : [a,b]: [ a , b ] :
P ( X ∈ [ a , b ] ) = ∫ a b f X ( x ) dx \mathcal{P}(X\in[a,b])=\int_{a}^bf_X(x)\space \text{dx} P ( X ∈ [ a , b ]) = ∫ a b f X ( x ) dx 8.3.3 Example Let X ∼ U ( 0 , 1 ) X\sim \mathcal{U}(0,1) X ∼ U ( 0 , 1 )
The probability density function f X f_X f X can be defined as:
f X ( x ) = { 0 if x < 0 1 if x ∈ [ 0 , 1 ] 0 otherwise f_X(x)=\begin{cases} 0 &\text{if} \space x <0 \\ 1 &\text{if} \space x\in[0,1]\\ 0 &\text{otherwise} \end{cases} f X ( x ) = ⎩ ⎨ ⎧ 0 1 0 if x < 0 if x ∈ [ 0 , 1 ] otherwise